比特币密码学量子 比特币量子破解
一、量子计算机能破解比特币吗
量子计算机有可能破解比特币的加密算法,但这并不是一件简单或立即就能实现的事情。
量子计算机利用量子力学的原理,能够在某些计算任务上远超传统计算机。比特币使用的是一种叫做椭圆曲线数字签名算法的加密技术,以及工作量证明机制来确保其安全。这些技术都是基于数学难题,传统计算机难以解决。然而,量子计算机有潜力利用量子纠缠和量子叠加等特性,通过一种叫做Shor算法的方法,来更高效地解决这些数学难题。
不过,值得注意的是,目前量子计算机还处在发展的早期阶段,距离能够实际威胁到比特币安全的实用化水平还有很长的路要走。此外,比特币社区也一直在关注量子计算的发展,并考虑采用抗量子密码学等新技术来增强比特币的安全性。
因此,虽然从理论上讲,量子计算机有可能破解比特币的加密算法,但在可预见的未来,这仍然是一个具有挑战性的任务,而且比特币社区也在积极应对这一潜在威胁。
二、什么是密码学
密码学领域自二战中德国人使用的臭名昭著的密码发生器“谜机”(Enigma machines)时代以来发生了巨大的变化。
自古以来,人们就依靠密码学这门书写和解决编码信息的艺术来保护自己的秘密。在五世纪,加密信息被刻在皮革或纸上,由人类信使传递。如今,当我们的数字数据通过互联网传输时,密码有助于保护它们。明天,这个领域可能会有另一个飞跃;随着量子计算机的出现,密码学家们正在利用物理学的力量来产生迄今为止最安全的密码。
保密的历史方法
这个词“密码学”是从希腊语“kryptos”派生出来的,意思是隐藏的,而“graphin”则是要写的。密码学允许双方在明视的情况下,但使用对方无法读取的语言进行通信,而不是物理上对敌方的眼睛隐藏消息。要加密消息,发送方必须使用某种系统方法(称为算法)来操作内容。原始消息称为明文,可能会被置乱,使其字母以不可理解的顺序排列,或者每一个字母都可能被另一个字母替换。根据计算机科学速成班的说法,由此产生的胡言乱语被称为密文。古希腊时代的
斯巴达军队使用一种叫做scytale的装置对信息进行加密,根据密码学历史中心的说法,scytale是由一根木棍周围的一条皮条构成的。解开后,纸条上似乎有一串随机字符,但如果绕着一根一定大小的棍子,字母就会排列成单词。据《大西洋月刊》报道,这种字母洗牌技术被称为换位密码。
《卡玛经》提到了一种被称为代换的替代算法,它建议女性学习将自己的联络记录隐藏起来的方法。为了使用替换,发送者将消息中的每个字母换成另一个;例如,“a”可能变成“Z”,等等。要解密这样的信息,发送者和接收者需要就交换哪些字母达成一致,就像斯巴达士兵需要拥有同样大小的密码一样。
第一个密码分析员
必须对将密文还原为明文所需的特定知识(称为密钥)保密,以确保信息的安全。破解一个没有密钥的密码需要大量的知识和技能。
代换密码在公元前一千年一直没有破解,直到***数学家al-Kindi意识到它的弱点,根据《密码簿》(Random House,2011)的作者Simon Singh的说法。注意到某些字母比其他字母使用得更频繁,al-Kindi能够通过分析密文中出现频率最高的字母来逆转替换。***学者成为世界上最重要的密码分析员,迫使密码学家调整他们的方法。
随着密码方法的进步,密码分析员开始挑战他们。在这场正在进行的战斗中,最著名的小冲突之一是盟军在第二次世界大战期间试图打破德国的神秘机器。谜机使用一种替换算法对消息进行加密,这种算法的复杂密钥每天都在变化;而根据美国中央情报局的说法,密码分析师艾伦·图灵(Alan Turing)开发了一种名为“炸弹”的设备来跟踪谜机的变化设置。
机密消息的发送者必须想出一个系统的一种处理消息上下文的方法,只有收件人才能破译。混乱的信息被称为密文。密码学在互联网时代
在数字时代,密码学的目标仍然不变:防止双方之间交换的信息被对手窃取。计算机科学家经常把双方称为“爱丽丝和鲍勃”,这种虚构的实体最初出现在1978年的一门艺术中描述一种数字加密方法。爱丽丝和鲍勃经常被一个叫“伊芙”的令人讨厌的窃听者所困扰。
各种应用程序都使用加密技术来保证我们的数据安全,包括信用卡号码、医疗记录和比特币等加密货币。比特币背后的技术区块链通过一个分布式网络连接数十万台计算机,并使用加密技术保护每个用户的身份并维护其交易的永久日志。
计算机网络的出现带来了一个新问题:如果Alice和Bob位于环球,他们怎么能不被伊芙抢走就共享一把秘密钥匙呢?据可汗学院称,公钥密码技术是一种解决方案。该方案利用了单向函数的优势,即在没有关键信息的情况下,易于执行但难以反转的数学。爱丽丝和鲍勃在伊芙的注视下交换了密文和一把公钥,但每个人都为自己保留了一把私钥。通过将两个私钥都应用到密文中,这对私钥就达到了一个共享的解决方案。与此同时,伊芙正在努力破译他们稀疏的线索。
一种被广泛使用的公钥加密形式,称为RSA加密,它利用了素数分解的棘手性质——找到两个相乘的素数,给你一个特定的解决方案。两个质数相乘根本不需要时间,但即使是地球上速度最快的计算机也可能需要数百年才能逆转这一过程。爱丽丝选择了两个数字来建立她的加密密钥,这使得伊芙很难找到这些数字。比特币背后的技术
区块链通过一个分布式网络连接数十万台计算机,并使用加密技术来保护每个用户的身份和记录。为了寻找一个牢不可破的密码,今天的密码学家正在寻找量子物理学。量子物理学描述了物质在不可思议的小尺度下的奇怪行为。像薛定谔著名的猫一样,亚原子粒子同时存在于许多状态中。但是当盒子打开时,粒子会进入一个可观察的状态。在20世纪70年代和80年代,物理学家开始使用这种时髦的特性来加密秘密信息,这种方法现在被称为“量子密钥分配”。
就像密钥可以用字节编码一样,物理学家现在根据粒子的特性(通常是光子)来编码密钥。恶意窃听者必须测量粒子才能窃取密钥,但任何这样做的尝试都会改变光子的行为,提醒爱丽丝和鲍勃注意安全漏洞。这个内置的警报系统使得量子密钥分配“可证明的安全”,有线报道。
量子密钥可以通过光纤进行远距离交换,但是在20世纪90年代,另一种分配途径引起了物理学家们的兴趣。这项技术是由Artur Ekert提出的,它允许两个光子在广阔的空间进行通信距离得益于一种称为“量子纠缠”的现象。
“纠缠的”量子物体有着惊人的特性,如果你把它们分开,即使是在数百英里之外,它们也能感觉到彼此,”Ekert说,现任牛津大学教授、新加坡国立大学量子技术中心主任。纠缠粒子表现为一个单元,允许爱丽丝和鲍勃通过在每一端进行测量来制作共享密钥。据《大众科学》报道,如果窃听者试图截取密钥,粒子就会发生反应,测量结果也会发生变化。
量子密码术不仅仅是一个抽象的概念;2004年,研究人员通过纠缠光子的方式将3000欧元转入银行账户。据《新科学家》报道,2017年,研究人员从卫星“米其”向地球发射了两个纠缠光子,使它们的连接保持在创纪录的747英里(1203公里)以上。许多公司现在都陷入了为商业应用开发量子密码的竞争中,并取得了一些成功到目前为止,为了保证网络安全的未来,“KDSPE”“KDSPs”,他们也可能在与时间赛跑。“KDSPE”“KDSPs”“如果有量子计算机,现有的密码系统,包括那些支持加密技术的系统,将不再是安全的,”Ekert告诉Live Science。我们不知道它们具体什么时候会被构建-我们最好现在就开始做一些事情。
附加资源:
使用一个模拟的谜机。通过速成课程了解更多有关网络安全的信息。在这次TED演讲中发现“怪物素数”的怪异之处
三、比特币价值将归零谷歌计划2029年前量子计算商用化
(思进注: 1994年,数学家Peter Shor公布了一种量子算法,该算法可以打破最常见的非对称密码算法的安全性假设。这意味着拥有足够大量子计算机的任何人,都可以使用此算法通过公钥反算出私钥,从而伪造任何数字签名。这是否意味着比特币将会被量子计算机crack down……事实上,中心化的密钥体系PKI,确实会有这个风险,因为大多数应用是CA+10的6次方。海量反编译,是可以推算出中心密码本的!也就是说,伪造PKI数字签名是有可能的,拭目以待吧……再转发下文,和大家分享……)
谷歌计划2029年前量子计算商用化,比特币价值将归零?
作者|新浪财经
来源|华尔街见闻
量子计算何以对比特币构成威胁?
在解释这个问题前,需要先了解以下几个知识点。
经典计算机采用二进制,用0和1构建了底层代码的一切。量子计算机可以同时储存和表示0和1叠加态。比特币挖矿基于计算一种名为SHA-256的哈希函数(一种函数算法,把任意一个字符串输入SHA-256函数,都会输出一个256位的二进制数)的正确值。每一个比特币用户在注册的时候,系统都会生成一个随机数,再对这个随机数进行SHA256再进行hash160,产生一个叫做私钥的字符串。作为数字签名。私钥可以对一串字符进行加密。而公钥可以把私钥加密之后的数据进行和解密。加密和解密的钥匙不一样的这种加密方式,称之为非对称加密。通过公钥反算不出私钥。如果私钥遗失,那么拥有者的比特币就无法取出。
基于上述原因,由于SHA-256的正确值十分难计算,数量有限的比特币才会变得极为稀缺和珍贵。同时由于经典计算机无法通过公钥反算出私钥,私人拥有的比特币才无法被他人获得。
但在1994年,数学家Peter Shor公布了一种量子算法,该算法可以打破最常见的非对称密码算法的安全性假设。这意味着拥有足够大量子计算机的任何人,都可以使用此算法通过公钥反算出私钥,从而伪造任何数字签名。
故而,在量子计算面前,比特币的挖矿将变得轻而易举,通过公钥也能反算出私钥。这令比特币变得不再稀缺,也不再安全。
同时意味着比特币的共识将产生崩塌,比特币的价值也将趋零。
关于量子力学,广为人知的还有光的波粒二象性、观测者效应,和一个著名的思想试验——薛定谔的猫。
量子世界是如此不合常理,以至于它曾令说出“上帝不会掷骰子“爱因斯坦,都感到困惑不解。
无论如何,量子计算机的出现,对经典计算机形成了巨大挑战。而随着量子计算研究进程的递进,比特币的破解,或许在2029年前就将成为可能。
谷歌的量子计算进程如何?
早在2019年,谷歌发表在《自然》杂志上的论文称,其开发的54比特(其中53个量子比特可用)超导量子芯片“Sycamore”,对53比特、20深度的电路采样一百万次仅需200秒,最强的经典超级计算机Summit要得到类似的结果,则需要一万年。基于这一突破,谷歌宣称实现了“量子霸权“。
而近日在 Google I/O大会上,领导谷歌 Quantum AI(量子人工智能)团队的的科学家Hartmut Neven表示,谷歌计划在2029年前建造数十亿美元的量子计算机并将其正式商用。
谷歌的目标是建造有着100万个量子比特的计算机。不过,谷歌同时表示,首先需要减少量子比特产生的错误,然后才能考虑将1000个量子比特一起构建为一个逻辑量子比特。这将为“量子晶体管”打下基础,“量子晶体管”是未来量子计算机的基础。目前谷歌的量子计算机只有不到100个量子比特。但要知道,互联网诞生至今不过52年,第一台通用计算机诞生至今不过75年.
谷歌目前正在加利福尼亚州扩建一个新园区,用以专注于量子计算方面的研究工作,扩建工程将于2020年底正式完工。
在量子计算领域大举投资和押注的公司,除了谷歌,还有IBM、D-Wave Systems、霍尼韦尔(Honeywell)。
IBM Research总监Dario Gil曾表示,2023年将是量子计算大面积使用的转折点,届时将能通过软件实时查看和更新量子计算的状态,而不再是通过以往的硬件调整。
高德纳咨询公司(Gartner)副总裁Chirag Dekate表示,过去五年中,量子计算的创新速度超过了此前的30年,他还预计到2025年,将有近40%的大公司制定量子计算计划。
关于对抗量子计算,目前已出现量子密码学的相关研究。一个名为The Open Quantum Safe(OQS)的开源项目已于2016年启动,目标为开发抗量子的密码形式。
-
芝麻开门交易所官网app 抹茶交易所官网下载 11-09